MEASUREMENT AND USE OF RETENTION DATA FROM HIGH-PERFORMANCE GRADIENT ELUTION

CORRECTION FOR "NON-IDEAL" PROCESSES ORIGINATING WITHIN THE COLUMN

M. A. QUARRY ${ }^{\star}$, R. L. GROB* and L. R. SNYDER ${ }^{\star \star, *}$
Biomedical Products Department, E. I. du Pont de Nemours \& Co., Concord Plaza, Wilmington, DE 19898 (U.S.A.)

(Received October 25th, 1983)

Abstract

SUMMARY

Under "ideal" conditions it is possible to model retention in gradient elution so as to be able to calculate retention times, t_{g}, as a function of isocratic retention in corresponding liquid chromatographic systems. In this paper we consider various "non-ideal" processes that lead to errors in calculated values of t_{g}. The more important of these are solvent demixing due to uptake of one mobile phase component by the column packing, non-linear plots of $\log k^{\prime} v$ s. gradient time or mobile phase composition and changes in column dead-time, t_{0}, due to changes in mobile phase composition and flow-rate. Expressions are derived to correct for these various "nonideal" effects, including equipment limitations discussed in the preceding paper. Calculated values of $t_{\mathbf{g}}$ for reversed-phase gradient elution systems then agree with experimental values to within $\pm 1 \%$ (1 standard deviation) of the total gradient time, t_{G}. These results should prove useful in (a) improving the precision of retention in gradient elution (which should be comparable to that in isocratic elution), (b) using gradient elution for more efficient method development in isocratic procedures and (c) better understanding gradient separations of macromolecules such as proteins.

INTRODUCTION

In the preceding paper ${ }^{1}$ we reviewed some of the applications of gradient elution, including its use for convenient and rapid method development for isocratic separation. The latter approach can be applied in various ways, including optimization of solvent strength and selectivity, optimization of temperature effects and optimization of pH effects and band shape. In each of these cases it is desired to use retention data from one or more gradient elution runs to predict retention times in

[^0]corresponding isocratic systems. Theoretical models or numerical procedures exist which allow this interconversion of gradient and isocratic data (e.g., ref. 2), but prior models assume "ideal" conditions, with no complications introduced by the equipment or by processes occurring within the column. Often these latter effects are of minor importance, and many studies have reported reasonable agreement between measured and calculated retention times in gradient elution, based on separate measurements of isocratic retention in the same high-performance liquid chromatographic (HPLC) systems (for review see, e.g., refs. 2-8). In certain cases, however, it is required that the calculation of gradient data from isocratic measurements (and vice versa) be as accurate as possible. In other cases, e.g., the separation of macromolecular species ${ }^{9}$, small errors in the gradient measurements appear to translate into large errors in derived isocratic parameters. Then it is necessary to minimize effects from gradient "non-ideality" and/or to correct for retention contributions from these effects. For these reasons we studied various contributions to gradient non-ideality. In the preceding paper ${ }^{1}$ we examined non-ideal effects arising from the gradient equipment. In this paper we consider non-ideal effects that originate within the column.

Our approach is to combine theoretical analysis with experimental confirmation from a model liquid chromatographic (LC) system: the five $\mathrm{C}_{1}-\mathrm{C}_{5}$ n-dialkyl phthalates as solutes, acetonitrile-water as mobile phase and various C_{18} reversedphase columns. We believe the results can be readily extrapolated to other LC systems, particularly those involving reversed-phase separations. The gradient shapes specifically studied correspond to the generally optimal linear solvent strength (LSS) gradients ${ }^{2}$. For reversed-phase systems, this means gradients where mobile phase composition (or volume fraction of organic solvent, φ) increases linearly with time. The extension of our findings to other gradient shapes is possible, but more complicated.

The immediate objective of this study was to accumulate gradient retention data over a wide range of conditions for several solutes, and to compare these retention times, t_{g}, with values calculated from isocratic retention times, t_{R}, as indicated in refs. 1 and 2. Differences in experimental vs. calculated t_{g} values $(\delta \varphi)$ were then analyzed in terms of various theoretical contributions ($\delta \varphi_{i}$) to error in the calculated t_{g} value (which ignores gradient "non-ideality"). Our aim was to account quantitatively for these experimental $\delta \varphi$ valucs, so as to permit correction for gradient nonideality in any gradient run.

THEORY

In the preceding paper ${ }^{1}$ we reviewed certain fundamental equations that we shall use in this paper:

$$
\begin{align*}
& \log k^{\prime}=\log k_{0}-b\left(t / t_{0}\right) \tag{1}\\
& \log k^{\prime}=\log k_{\mathrm{w}}-S \varphi \tag{2}\\
& b=S \Delta \varphi t_{0} / t_{\mathrm{G}} \tag{3}\\
& t_{\mathrm{g}}=\left(t_{0} / b\right) \log \left[2.3 k_{0} b\left(t_{\mathrm{sec}} / t_{0}\right)+1\right]+t_{\mathrm{sec}}+t_{\mathrm{D}} \tag{4}
\end{align*}
$$

For details on these relationships see refs. 1 and 2 and the glossary at the end of this paper, which lists all symbols used in this and the preceding paper ${ }^{1}$.

Eqn. 4 expresses retention time, t_{g}, in gradient elution as a function of certain parameters that can be measured in corresponding isocratic systems (eqns. 1-3). These relationships (eqns. 1-4) are based on certain assumptions:
(1) absence of gradient "nonideality" at the column inlet:
(a) perfect mixing and proportioning of gradient solvents as required by
the selected gradient shape; constant flow of gradient mobile phase during separation;
(b) no delay in the arrival of the gradient at the column inlet, following
injection of the sample (eqn. 4 does recognize the gradient delay time, t_{D});
(c) no distortion of the gradient shape due to its dispersion in the gradient mixer, connecting tubing, etc.;
(2) retention data obtained in both isocratic and gradient systems are adequately precise and reproducible; the precisions of these data are known;
(3) variations in t_{0} and $t_{\text {sec }}$ with experimental conditions (e.g., refs. 9-12) are taken into account;
(4) Eqn. 2 describes the isocratic retention data (linear plots of $\log k^{\prime} v s . \varphi$);
(5) solvent demixing as a result of preferential retention of a mobile phase component within the stationary phase does not occur;
(6) the stationary phase is at equilibrium with the mobile phase at any time during the gradient and at any position within the column;
(7) k^{\prime} is not a function of column pressure;
(8) the column is adequately equilibrated with starting mobile phase before each gradient run;
(9) the column for both isocratic and gradient runs is adequately thermostated, mobile phase entering the column is at the temperature of the column and frictional heating of the column by the mobile phase has no significant effect on retention;
(10) all other requirements for valid retention time measurements are met: small sample size for linear isotherm data, sample dissolved in weak solvent, etc. (e.g., ref. 13).

These various effects are discussed below.

Gradient "non-ideality"

The preceding paper ${ }^{1}$ dealt with these issues in detail. Eqn. 4 includes the effect of gradient delay $\left(t_{\mathrm{D}}\right)$.

Reproducibility of gradient and isocratic retention data

Reproducibility of retention data depends on holding many separation parameters constant: temperature, flow-rate, mobile phase composition, etc. ${ }^{13,14}$. In the following section it will be seen that the reproducibility of retention data as measured by us was generally better than the agreement between isocratic and gradient data. Therefore, reproducibility per se was of less interest in this study. We did, however, examine two cases of general interest to gradient/isocratic correlations.

First, consider all the contributions from system variability that affect k^{\prime} in an isocratic separation. These include variations in temperature, mobile phase composition, the condition of the column, etc. What will be the effect of imprecision in k^{\prime}
(isocratic) on gradient retention? Typically, under so-called gradient conditions ${ }^{2}$, the value of k_{0} (eqn. 1) for a given solute in a given gradient separation will be large. Under these conditions, eqn. 4 can be approximated by

$$
\begin{equation*}
t_{\mathrm{g}}=\left(t_{0} / b\right)\left[\log 2.3 b\left(t_{\mathrm{sec}} / t_{0}\right)+\log k_{0}\right]+t_{\mathrm{sec}} \tag{5}
\end{equation*}
$$

and an error in k_{0} of δk_{0} yields an error in $t_{\mathrm{g}}\left(\delta t_{\mathrm{g}}\right)$ of

$$
\begin{equation*}
\delta t_{\mathrm{g}}=\left(t_{0} / 2.3 b\right)\left(\delta k_{0} / k_{0}\right) \tag{6}
\end{equation*}
$$

or

$$
\delta \varphi_{\mathrm{k}}=\left(\delta t_{\mathrm{g}} / t_{\mathrm{G}}\right) \Delta \varphi=\left(t_{0} \Delta \varphi / 2.3 b t_{\mathrm{G}}\right)\left(\delta k_{0} / k_{0}\right)
$$

and

$$
\begin{equation*}
\delta \varphi_{\mathbf{k}}=\left(\delta k_{0} / k_{0}\right) / 2.3 S \approx\left(\delta k^{\prime} / k^{\prime}\right) / 2.3 S \tag{7}
\end{equation*}
$$

Second, modern HPLC pumps which employ low-pressure mixing of the gradient solvents often experience a timing delay in starting the gradient. In the case of the DuPont Model 8800 HPLC system, there is an uncertainty of $0-6 \mathrm{sec}$ in the initiation of the gradient after a command by the operator or microprocessor, as a result of the cycle time for the solenoid valves that feed the gradient mixing chamber. This in turn yield an imprecision in t_{g} of $6 / \sqrt{12}=1.7 \mathrm{sec}$ (e.g., ref. 14).

Variation in t_{0} and $t_{\text {sec }}$ with experimental conditions

Eqn. 4 expresses gradient retention time, t_{g}, as a function of the column deadtime t_{0} (retention time for a small, unretained solute molecule such as water) and t_{sec}. The quantity $t_{\text {sec }}$ is the retention time of the solute of interest if it is unretained, or of a molecule of equivalent size (so far as size-exclusion retention) that is not retained by the alkyl-silica surface (see discussion in ref. 9). Several workers have discussed the variation of t_{0} with mobile phase composition in reversed-phase systems ${ }^{10-12}$. In practice, it is convenient to measure t_{0} in these systems from the retention time for $\mathrm{D}_{2} \mathrm{O}$ as the sample. It can be assumed that values of t_{sec} likewise vary with mobile phase composition, but the direct measurement of t_{sec} for solutes that are retained ($k^{\prime} \neq 0$) in a given mobile phase is not possible. Further complicating the application of eqn. 4 is the fact that mobile phase composition varies during a gradient separation, as do values of t_{0} and $t_{\text {sec }}$.

Fortunately, valucs of t_{g} from cqn. 4 are not strongly dependent on the values of t_{0} and $t_{\text {sec }}$ assumed for a given system. This can be seen as follows. The isocratic value of k^{\prime} is given ${ }^{9}$ by

$$
\begin{equation*}
k^{\prime}=\left(t_{\mathbf{R}}-t_{\mathrm{sec}}\right) / t_{\mathrm{sec}} \tag{8}
\end{equation*}
$$

for solutes where $t_{0} \neq t_{\text {sec }}$. The value of k_{0} (eqn. 1) will normally be large, so we can write

$$
\begin{equation*}
k_{0} \approx C_{1} / t_{\mathrm{sec}} \tag{9}
\end{equation*}
$$

where C_{1}, to a first approximation, is not a function of t_{sec} (because the retention time $t_{\mathrm{R}} \gg t_{\mathrm{sec}}$. Likewise, it can be seen from eqn. 3 that the lumped-parameter term b / t_{0} equals $S \Delta \varphi / t_{\mathrm{G}}$ and is also not a function of t_{0} or t_{sec}. Eqn. 4 can now be rewritten, using eqns. 3 and 9 , to give

$$
\begin{align*}
t_{\mathrm{g}} & =\left(t_{0} / b\right) \log \left[2.3\left(b / t_{0}\right)\left(k_{0} t_{\mathrm{sec}}\right)+1\right]+t_{\mathrm{sec}} \\
& =\left(t_{\mathrm{G}} / \Delta \varphi S\right) \log \left[2.3\left(\Delta \varphi S / t_{\mathrm{G}}\right) C_{1}+1\right]+t_{\mathrm{sec}} \\
& =\mathrm{f}\left(t_{\mathrm{G}}, \Delta \varphi, S, C_{1}\right)+t_{\mathrm{sec}} \tag{10}
\end{align*}
$$

The term $\mathrm{f}\left(t_{\mathrm{G}}, \ldots\right)$ in eqn. 10 is not a function of t_{0} or t_{sec}, so that the functional dependence of t_{g} on t_{0} and t_{sec} is contained in the final term of eqn. 10 , i.e., t_{g} depends on $t_{s e c}$ but not on t_{0}. Uncertainty in the value of t_{sec} will normally be small compared with the value of t_{g}, meaning that errors in calculated values of t_{g} should not be large owing to errors in the value of t_{sec} assumed.

Because the calculated value of t_{g} (eqn. 4) is not strongly dependent on errors in the estimate of t_{sec}, we are justified in an approximate treatment which allows us to estimate $t_{\text {sec }}$ as a function of mobile phase composition. We can then estimate the average value of t_{sec} during band migration in gradient elution, by taking the value of t_{sec} corresponding to the average mobile phase composition $\dot{\varphi}$ during migration ${ }^{1}$. Our approach to the calculation of $t_{\text {sec }}$ values for $\mathrm{C}_{1}-\mathrm{C}_{5}$ dialkyl phthalates in acetonitrile-water mobile phases with different φ values was briefly as follows. First, a size-exclusion chromatography calibration plot was determined for the column of interest, tctrahydrofuran as mobile phase and various polystyrencs as solutes (Table II in ref. 9). Second, the various $\mathrm{C}_{1}-\mathrm{C}_{5}$ dialkyl phthalates were run as solutes in this system to determine their retention times, t_{sec}. Third, the ratio t_{sec} / t_{0} was assumed to remain constant for a given solute as φ is varied. For the phthalates as solutes, this meant that $t_{\mathrm{sec}} \approx 0.93 t_{0}$. The values of $t_{\text {sec }}$ given in Table I are from a more sophisticated approach, based on a consideration of the fractional pore volume accessible to the solute, and assuming that differences in t_{0} arise from changes in the volume of mobile phase within the packing pores that is accessible to small solutes. Details of the latter analysis are available from the authors.

Non-linear plots of $\log k^{\prime} v s . \varphi$

It is usually observed for reversed-phase LC systems (e.g., ref. 15) that plots of $\log k^{\prime} v s . \varphi$ are linear, within experimental error. The use of linear φ vs. time (t) gradients as in this study then gives adherence to eqn. 1, which in turn is the basis for calculations of t_{g} values via eqn. 4. For the precise calculation of values of t_{g}, however, even slight non-linearity of $\log k^{\prime} v s . \varphi$ can result in unacceptable errors if eqns. 1-4 are used without modification.

Other workers (e.g., ref. 16) have noted that plots of $\log k^{\prime} v s . \varphi$ often exhibit slight curvature, particularly when data are collected over a wide range of φ. We found this to be the case for the dialkyl phthalates studied here, as shown in Fig. 1 for one of the two columns studied by us. Isocratic retention data for both columns and all solutes are given in Table II. Our approach to the complication of non-linear $\log k^{\prime}$ vs. φ plots was as follows. First, experimental tabulations of $\log k^{\prime} v s . \varphi$ for

TABLE I
EXPERIMENTAL VALUES OF t_{0} AND CALCULATED VALUES OF $t_{\text {sec }}$ FOR DIALKYL PHTHALATE SOLUTES IN THE PRESENT LC SYSTEMS

Temperature, $35^{\circ} \mathrm{C}$; flow-rate, $2.0 \mathrm{ml} / \mathrm{min}$.

Column	φ	$t_{0}{ }^{\star}$ (min)	$t_{\text {sec }}{ }^{\star \star}(\mathrm{min})$	
			$C_{1}^{\star \star \star}$	$C_{5}^{\star \star \star}$
6-nm pore	0.00	1.23	1.13	1.11
	0.10	1.18	1.08	1.07
	0.20	1.15	1.06	1.04
	0.30	1.12	1.03	1.02
	0.40	1.09	1.01	0.99
	0.50	1.07	0.99	0.98
	0.60	1.09	1.01	0.99
	0.70	1.15	1.06	1.04
	0.80	1.17	1.08	1.06
	0.90	1.26	1.15	1.13
15-nm pore	1.00	1.35	1.23	1.21
	0.00	1.37	1.31	1.29
	0.20	1.27	1.22	1.20
	0.40	1.22	1.17	1.15
	0.60	1.24	1.19	1.17
	0.80	1.30	1.24	1.23
	1.00	1.40	1.34	1.32

[^1]each solute were fitted to a polynomial (see Table II). Enough terms in the polynomial were included to provide a fit of experimental points to the curve within ± 0.01 unit in $\log k^{\prime}$. Second, a value of $\bar{\varphi}$ is estimated, and the tangent $\mathrm{d}\left(\log k^{\prime}\right) / \mathrm{d} \varphi$ to the \log $k^{\prime} \nu s . \varphi$ curve at this value of φ is determined. The tangent equation is then taken as an approximation to eqn. 2, values of b and k_{0} are calculated from eqns. 2 and 3 and eqn. 4 is used to calculate t_{g}. A new value of $\bar{\varphi}$ is then recalculated from eqns. 8 and 9 of the preceding paper ${ }^{1}$. If the latter value of $\bar{\varphi}$ differs significantly from the original estimate of $\bar{\varphi}$, the new value of $\bar{\varphi}$ is used to determine a new tangent curve to the $\log k^{\prime} v s . \varphi$ isocratic plot, and the calculation of b, k_{0}, t_{g} and $\bar{\varphi}$ is repeated. This iterative approach to t_{g} is continued until the estimated and calculated values of $\bar{\varphi}$ agree, or until successive values of t_{g} do not change.

The success of the latter procedure in providing accurate t_{g} values via eqn. 4 has been checked ${ }^{15,16}$ by numerical integration of the fundamental equation for retention in gradient elution (eqn. A1 in the preceding paper ${ }^{1}$). The error in the resulting t_{g} values is generally less than 1%, except for much more severe curvature of $\log k^{\prime}$ vs. φ plots than was observed by us. For $10-100 \%$ organic/water gradients as used by us, this corresponds to an error in t_{g} of $\delta \varphi<0.005$ (see ref. 1 and Glossary for the significance of values of $\delta \varphi$).

Fig. 1. Dependence of capacity factor $\left(\log k^{\prime}\right)$ on mobile phase composition (φ) for $\mathrm{C}_{1}, \mathrm{C}_{3}$ and C_{5} dialkyl phthalates as solutes. Isocratic data at $35^{\circ} \mathrm{C}$, acetonitrile-water as mobile phase, $6-\mathrm{nm}$ pore C_{18} column and flow-rate $2 \mathrm{ml} / \mathrm{min}$.

TABLE II
ISOCRATIC RETENTION DATA (k^{\prime}) FOR $\mathrm{C}_{1}-\mathrm{C}_{5}$ DIALKYL PHTHALATES IN THE PRESENT LC SYSTEMS

Column	$T\left({ }^{\circ} \mathrm{C}\right)$	φ	k^{\prime}				
			C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
6-nm pore	35	0.10	98.4				
		0.20	23.1	107.4			
		0.25	13.62	55.2	133.4		
		0.40	4.01	11.11	20.3	120.0	
		0.50	2.25	5.19	8.20	35.7	95.6
		0.55	1.69	3.63	5.42	22.0	54.5
		0.60	1.32	2.66	3.73	14.09	32.6
		0.65	1.00	1.94	2.59	9.18	20.1
		0.70	0.79	1.46		6.23	12.95
		0.75	0.61	1.10	1.35	4.21	8.31
		0.80	0.48	0.82		2.88	5.40
		0.85	0.36	0.60	0.68	1.93	3.43
		0.90	0.25	0.43		1.25	2.11

(Continued on p. 26)

TABLE II (continued)

Column	$T\left({ }^{\circ} \mathrm{C}\right)$	φ	k^{\prime}				
			C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
	60	0.20	15.92				
		0.25	9.48				
		0.35	4.24	12.59			
		0.40	3.06	8.21	13.97		
		0.45	2.31	5.65	8.96		
		0.50	1.79	4.02	6.01		
		0.55	1.37	2.88	4.07		
		0.60	1.06	2.10	2.82	9.99	21.5
		0.65	0.83	1.55	2.01	6.54	13.42
		0.70	0.64	1.16	1.45	4.40	8.50
		0.75	0.51	0.89	1.08	3.01	5.52
		0.80	0.39	0.66	0.79	2.04	3.55
		0.85	0.29	0.48	0.55	1.36	2.26
		0.90				0.88	1.39
15-nm pore	35	0.10	48.6				
		0.20	12.02	51.3			
		0.25	7.57	28.7			
		0.35	3.28	9.74	18.14		
		0.40	2.38	6.27	11.25		
		0.50	1.33	2.94		17.52	43.6
		0.55	1.00	2.09	3.05	11.49	25.0
		0.60	0.77	1.54	2.12	7.34	16.11
		0.65	0.60	1.14	1.50	4.82	9.93
		0.70	0.46	0.84	1.06	3.25	6.36
		0.75	0.36	0.64	0.78	2.27	4.25
		0.80	0.30	0.50	0.58	1.58	2.81
		0.85	0.24			1.10	1.87
Column ${ }^{\text {* }}$	$T\left({ }^{\circ} \mathrm{C}\right)$	Solute	A	B	C	D	E
6-11m pore	35		2.876	-10.477	17.884	-17.227	6.252
		C_{2}	3.581	- 9.569	9.980	-4.683	-
		C_{3}	4.220	-10.776	10.689	-4.793	-
		C_{4}	6.346	-16.669	18.392	-8.447	-
		C_{5}	6.642	-15.173	14.991	-6.583	-
	60	C_{1}	2.387	-7.543	8.910	-4.823	-
		C_{2}	3.319	- 9.192	9.905	-4.857	-
		C_{3}	3.671	- 9.160	8.688	-3.935	-
		C_{4}	3.094	-3.493	-		-
		C_{5}	3.690	-3.936	-	-	-
15-nm pore	35	C_{1}	2.584	-10.459	19.119		8.242
		C_{2}	3.166	- 8.750	8.646	-3.915	-
		C_{3}	3.640	- 9.264	8.393	-3.601	-
		C_{4}	3.831	- 6.113	1.956	-	-
		C_{5}	4.445	-6.556	1.943	-	-

[^2]
Solvent demixing during gradient elution

If a portion of alkyl-silica reversed-phase packing material is equilibrated with mobile phase of composition φ, it is observed ${ }^{10,11}$ that the value of φ in the mobile phase decreases, corresponding to uptake of organic solvent by the stationary phase. In gradient elution with systems where such sorption of organic from the mobile phase can occur, it would be expected that the value of φ for a volume element of the gradient moving through the column would be decreased as a result of similar sorption of organic solvent by the stationary phase. This process is illustrated schematically in Fig. 2. In Fig. 2a a gradient is observed within the bed, across two adjacent-particles, 1 and 2. On the left in Fig. 2a, the gradient is portrayed at some time t during the separation. On the right in Fig. 2a the gradient is shown at a later time $(t+\mathrm{d} t)$. Volume elements of concentration $(\varphi-\mathrm{d} \varphi), \varphi$ and $(\varphi+\mathrm{d} \varphi)$ have advanced a distance equal to one particle diameter. In Fig. 2a, no sorption of organic solvent by the particles is assumed. In Fig. $2 b$ the same process is shown again, but with depletion of the mobile phase by sorption of organic solvent. A change in concentration due to sorption is observed, equal to $-\mathrm{d} \varphi_{1}$ from sorption on to particle 1 , and $-\mathrm{d} \varphi_{2}$ from sorption on to particle 2 . The net effect of such sorption of organic solvent by the packing material will be a change in the gradient ($\varphi v s . \mathrm{t}$) relative to that predicted in the absence of sorption effects.

We can model the depletion of the mobile phase and resulting distortion of the gradient as follows (Fig. 3). A column initially equilibrated with mobile phase of composition φ_{0} is assumed (Fig. 3a). The stationary phase concentration will then be $\psi_{0}\left(\mu / / \mathrm{m}^{2}\right.$ of particle surface). The first differential volume of the gradient will have concentration $\varphi+\mathrm{d} \varphi$, and this now moves into the column to give the new mobile phase composition profile shown in Fig. 3b. The cells (numbered 1, 2,...) in Fig. 3 correspond to differential column lengths which are just large enough to accommodate the differential volume of mobile phase transferred to the column in Fig. 3b. Each cell is divided into mobile phase and stationary phase compartments (m and s). Equilibration of mobile and stationary phase compartments occurs in the next step, yielding the concentration profile of Fig. 3c. Finally, another movement of mobile phase occurs (Fig. 3d), and the process is continued iteratively. A knowledge of the sorption isotherm allows the calculation of equilibrium concentrations after each differential transfer of mobile phase, and continuation of the process

Fig. 2. Origin of solvent demixing during gradient elution. (a) Representation of the mobile phase gradient across particles 1 and 2 within the column at times t and $t+d$ (no solvent sorption); (b) same but at a later time $t+d t$, showing decrease in φ as a result of sorption of organic solvent by particles 1 and 2 .

Fig. 3. Model for calculating organic-solvent sorption during gradient elution. (a) Beginning of gradient, column equilibrated with mobile phase of $\varphi=\varphi_{0}$; (b) first volume element of gradient enters column; (c) new mobile phase and column inlet are equilibrated, with change in mobile phase (φ) and surface (ψ) concentrations; (d) second volume element of gradient enters column.
through the end of the gradient in turn yields the perturbation of the original gradient as a result of sorption of organic solvent.

Calculation of the change in mobile phase composition after each transfer as in Fig. 3 is based on conservation of mass. Thus, assume a differential volume $\mathrm{d} V$ of mobile phase has an initial composition (before equilibration) of φ_{i}, and assume the surface area of the associated stationary phase is $\mathrm{d} s$, with surface concentration ψ_{i}. Let the concentrations after equilibration be φ_{i+1} and ψ_{i+1}, respectively. The amount of solute in the differential system is $\left(\varphi_{i} \mathrm{~d} V+\psi_{i} \mathrm{~d} s\right)$ initially, which must equal the final amount of solute: $\varphi_{i+1} \mathrm{~d} V+\psi_{i+1} \mathrm{~d} s$. The quantity ψ at equilibrium is related to φ by

$$
\begin{equation*}
\psi=K_{\mathrm{s}} \varphi \tag{11}
\end{equation*}
$$

which then yields

$$
\begin{equation*}
\varphi_{i+1}=\left(\varphi_{i} \mathrm{~d} V+\psi_{i} \mathrm{~d} s\right) /\left(\mathrm{d} V+K_{\mathrm{s}} \mathrm{~d} s\right) \tag{11a}
\end{equation*}
$$

Values of ψ as a function of φ (sorption isotherms) can be calculated from the data in refs. 10 and 11 for the mobile phases water-methanol, water-acetonitrile and water-tetrahydrofuran at temperatures in the range $20-40^{\circ} \mathrm{C}$ (the isotherms are not very temperature dependent). The data in refs. 10 and 11 are given as excess of sorbed material, ψ^{*} vs. φ, and the saturation uptake by the packing is equal to about 1.3 $\mu 1 / \mathrm{m}^{2}$ for both acetonitrile and tetrahydrofuran. Values of ψ are then related to values of ψ^{*} by

$$
\begin{equation*}
\psi=\psi^{*}+1.3 \varphi \tag{12}
\end{equation*}
$$

The values obtained for ψ vs. φ at $40^{\circ} \mathrm{C}$ for acetonitrile-water are given in Table III (data from ref. 11).

The effect on t_{g} of a change in the original gradient composition, φ, at any point in the gradient can be determined as follows. First, the average effect over the

TABLE III
TOTAL UPTAKE BY ALKYL-SILICA OF ACETONITRILE FROM WATER-ACETONITRILE MIXTURES AT $40^{\circ} \mathrm{C}$
Calculated from data of ref. 11 using eqn. 12.

φ	$\psi\left(\mu l / \mathrm{m}^{2}\right)$	φ	ψ
0	0	0.6	1.10^{\star}
0.1	0.38	0.8	1.21^{\star}
0.2	0.63	1.0	1.3^{\star}
0.3	0.81		
0.4	0.95		
0.5	1.03		

* Fitted to saturation uptake of $1.3 \mu 1 / \mathbf{m}^{2}$.
entire gradient is given approximately by the change in φ at $\bar{\varphi}$, which we shall define as $\delta \varphi_{\mathrm{s}}$. That is, $\delta \varphi_{\mathrm{s}}$ is the change in φ at the column midpoint. As for the similar case of gradient mixer-related changes in $\varphi, \delta \varphi_{\mathrm{m}}{ }^{1}$, we expect that the contribution of $\delta \varphi_{\mathrm{s}}$ to $\delta \varphi$ will be about

$$
\begin{equation*}
\delta \varphi=-\delta \varphi_{s} \tag{13}
\end{equation*}
$$

Actually, modeling of this situation in terms of the fundamental equation of gradient retention (eqn. A1 in ref. 1) shows that

$$
\begin{equation*}
\delta \varphi=-1.1 \delta \varphi_{\mathrm{s}} \tag{13a}
\end{equation*}
$$

which is the same result obtained for the relationship of $\delta \varphi$ to $\delta \varphi_{\mathrm{m}}$ (eqn. 34 in ref. 1). That is, in each instance the contribution to $\delta \varphi$ is about 1.1 -fold greater than that estimated from the change in φ at the column midpoint.

The next step in determining values of $\delta \varphi_{\mathrm{s}}$ is to use the model described in Figs. 2 and 3 with the isotherm data for acetonitrile-water in Table III. The results of such a calculation for given values of s and V_{G} are given in Fig. 4, where $\delta \varphi_{\mathrm{s}} V_{\mathrm{G}} / s$ is plotted against $\tilde{\varphi}$ for various gradients: $10-100 \%$ acetonitrile-water (as used in the present studies), $30-100 \%$ and $50-100 \%$. These plots show that $\delta \varphi_{\mathrm{s}}$ is small for solutes eluting under gradient conditions near the beginning or end of the chromatogram, and reaches a maximum value near the middle of the chromatogram. Errors in calculated values of t_{g} (eqn. 4) due to solvent demixing during gradient elution are therefore largest for solutes with intermediate values of t_{g}. These errors also increase with increasing surface area of the column, and decrease with increasing values of V_{G}. That is, a larger value of s results in a greater uptake of the organic solvent by the column (as uptake is proportional to s; see ref. 11). Similarly, the effect of solvent uptake by the column is greatest when the total volume of mobile phase passing through the column $\left(V_{G}\right)$ is smaller, as then the concentration change in the mobile phase is greater.

The general results in Fig. 4 apply exactly only for sufficiently large values of V_{G} / s, because as V_{G} / s becomes small the gradient is distorted in a major way and values of $\delta \varphi_{\mathrm{s}} V_{\mathrm{G}} / s$ then become dependent on the value of V_{G} / s. For reversed-phase

Fig. 4. Change in mobile-phase composition ($\delta \varphi_{\mathrm{s}}$) during gradient elution with a reversed-phase column as a result of uptake of organic solvent by packing. Acetonitrile water gradients for various starting compositions φ_{0}. Calculated according to the scheme in Fig. 3.
columns and common organic solvents, it appears that this effect is generally unimportant, as long as $V_{\mathrm{G}} / s \geqslant 20 \mu \mathrm{l} / \mathrm{m}^{2}$. Likewise, the curves in Fig. 4 depend on the plate number of the column used. However, this effect is small when the value of N is large, as will generally be the case in LC separations.

Stationary phase non-equilibrium

Two types of stationary phase non-equilibrium can be distinguished. First, the above discussion and Table III indicate that a variable amount of organic solvent will be "sorbed" on to the stationary phase at equilibrium, depending on the value of φ or time during the gradient. Presumably values of k^{\prime} are affected by the relative amount of sorbed organic solvent, apart from the value of φ in the mobile phase. During gradient elution it is conceivable that complete equilibration of the stationary and mobile phases is not achieved at each point within the column and at every time during the gradient. This might then result in some variation of k^{\prime} values from the equilibrium values predicted by eqn. 1. This in turn would result in deviations of experimental t_{g} values from values predicted by eqn. 4. In a later section we shall show that experimental values of $\delta \varphi_{\mathrm{s}}$ are in good agreement with values predicted by the model in Figs. 2 and 3, which assumes instantaneous equilibrium of the sta-
tionary and mobile phases throughout the gradient (relative to uptake of organic solvent by the column packing). This suggests that equilibrium is in fact rapid, and the effect of phase non-equilibrium is therefore insignificant.

A second type of stationary phase non-equilibrium is also possible, having no direct connection with the amount of organic solvent sorbed on to the packing. Several studies have shown that changes in φ or temperature for bonded-phase LC systems can lead to slow changes in k^{\prime} from the original to final conditions ${ }^{17-21}$. It is believed that these effects are due to slow configurational changes in the alkyl groups bonded to the packing surface. Available experimental evidence suggests that such effects are more important for pronounced changes in conditions (temperature jump, change from one organic solvent to another, etc.) and for mobile phases composed of pure water. Therefore, gradient elution runs in which the starting value of $\varphi\left(\varphi_{0}\right)$ is not equal to zero (as is common practice) should be less sensitive to slow changes in alkyl-group configuration. This study provided no indication that this effect is important in affecting values of t_{g}.

Pressure dependence of k^{\prime}

In principle, values of k^{\prime} can be pressure dependent, which suggests another source of deviation from eqn. 4 at higher flow-rates and column pressures. One study ${ }^{10}$ has shown that t_{0} in reversed-phase systems can vary markedly with column pressure, particularly for lower values of φ. We observed similar effects in this study, as discussed in a later section. However, the preceding analysis (eqn. 10) suggests that variation in t_{0} (or t_{sec}) by itself will have only a minor effect on calculated values of t_{g}.

Equilibration of the column before gradient elution is begun

Following a gradient run, the column must be flushed with the starting mobile phase ($\varphi=\varphi_{0}$) prior to initiating the next gradient separation. Sufficient flushing must occur so that the column is at equilibrium with mobile phase of composition φ_{0}, as confirmed by constant t_{R} values for repeated injection of a solute under isocratic conditions (before starting the gradient). This requirement for repeatable retention times, t_{g}, in gradient elution is well known (e.g., refs. 2 and 13) and was adhered to in this study. In general it was found by us that a minimum of 15 column volumes of initial solvent ($\varphi=\varphi_{0}$) were required in order to wash the column between completion of one gradient run and initiation of the next gradient run.

Other requirements

These are well known (e.g., ref. 13) and were adhered to in this study. Systematic errors in column temperature or mobile phase composition lead to predictable trends in t_{R} and t_{g} values for a series of related solutes of varying retention (e.g., $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl phthalates as in this study) ${ }^{22}$. The variation in apparent error in t_{g} (experimental $v s$. calculated values) as a function of solute structure can therefore be used to test for specific causes of experimental error.

EXPERIMENTAL

Equipment

The liquid chromatograph used for these experiments was described in the preceding paper ${ }^{1}$. A refractive index detector (DuPont, Wilmington, DE, U.S.A.) was used for t_{0} measurements. Retention data were recorded with a Model 3380A integrator (Hewlett-Packard, San Diego, CA, U.S.A.).

Reagents

HPLC-grade solvents were as described in ref. 1. Phthalate esters were obtained from Chem Service (West Chester, PA, U.S.A.): dimethyl (C_{1}), diethyl (C_{2}), diallyl (C_{3}), di-n-butyl (C_{4}) and di-n-pentyl (C_{5}).

Columns

Columns were $25 \times 0.46 \mathrm{~cm}$ I.D., packed with nominal $6-\mu \mathrm{m}$ particles based on Zorbax-SIL (DuPont) and bonded with dimethyloctadecylchlorosilane (C_{18}). Particles referred to as " $6-\mathrm{nm}$ pore" were provided as commercial columns of ZorbaxODS, and columns of " 15 -nm pore" particles were prepared from non-commercial materials.

Chromatographic conditions

Isocratic and gradient retention data for a mixture of five phthalate esters $\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right)$ were obtained in triplicate (within-day runs). Only linear gradients were used ($10-100 \%$ acetonitrile-water). Isocratic k^{\prime} values were calculated from the equation $k^{\prime}=\left(t_{\mathbf{R}}-t_{\mathrm{sec}}\right) / t_{\mathrm{sec}}$, using values of t_{sec} from Table $\mathrm{I}\left(t_{\mathrm{R}}\right.$ is retention time). Values of t_{0} (Table I) were determined by injecting mobile phase supplemented with deuterium oxide (as in ref. 10). Values of t_{sec} were calculated for each solute from t_{0} values as described in the preceding section.

The reproducibility of both isocratic and gradient retention data was studied over a 60 -day interval for the five solutes. For isocratic runs, φ was equal to 0.75 and the flow-rate was $2.0 \mathrm{ml} / \mathrm{min}\left(6-\mathrm{nm}\right.$ pore column, $35^{\circ} \mathrm{C}$). For the gradient runs the same conditions were used, except φ was varied from 0.1 to 1.00 during the gradient.

RESULTS AND DISCUSSION

Isocratic and gradient retention data were collected for five solutes ($\mathrm{C}_{1}-\mathrm{C}_{5}$ dialkyl phthalates) with acetonitrile-water mobile phases. A broad range of separation conditions was examined, in order to assess adequately the various sources of error discussed under Theory. For isocratic systems these included two columns (6and $15-\mathrm{nm}$ pore diameters), two temperatures (35 and $60^{\circ} \mathrm{C}$) and mobile phase compositions with $0.10 \leqslant \varphi \leqslant 1.00$. For gradient systems, the same columns and temperatures were used, and the gradient conditions covered the following ranges: $5 \leqslant$ $V_{\mathrm{G}} \leqslant 640 \mathrm{ml}, 2.5 \leqslant t_{\mathrm{G}} \leqslant 320 \mathrm{~min}, 0.01 \leqslant b \leqslant 2.2$ and $0.2 \leqslant F \leqslant 4 \mathrm{ml} / \mathrm{min}$. The resulting values of k^{\prime} (isocratic) and t_{g} (gradient) are summarized in Tables II and IV, respectively.

As discussed in the preceding paper ${ }^{1}$, it is convenient to express the error in

TABLE IV (continued)

0000000000000000	000000000000000
0000000000000000000	-0-4-0000000

8	$\stackrel{\circ}{\circ}$	$\stackrel{8}{8}$	§o	$\stackrel{8}{8}$	¢	$\stackrel{9}{6}$	\%
$\stackrel{8}{4}$	$\stackrel{O}{i}$	$\stackrel{8}{4}$	$\stackrel{i}{\text { i }}$	$\stackrel{\circ}{i}$	$\stackrel{\text { i }}{ }$	$\stackrel{i}{i}$	$\stackrel{\circ}{\circ}$
$\stackrel{\infty}{\infty}$	8	E	$\stackrel{3}{\sim}$	\cdots	8	\bigcirc	¢

TABLE IV (continued)

Column	$T\left({ }^{\circ} \mathrm{C}\right)^{\star}$	$t_{G}(\min)^{\star \star}$	$F(m l / m i n){ }^{\star \star \star}$	$V_{M} / V_{G}{ }^{\text {s }}$	Solute ${ }^{\text {888 }}$	$t_{g}(\min)$		$\bar{\varphi}^{\text {588 }}$	$\delta \varphi^{\dagger}$	$-\left(\delta \varphi_{m}+\delta \varphi_{s}\right)^{\dagger \dagger}$	Residual ${ }^{\dagger \dagger} \dagger$
						Exptl.	Calc.				
					C_{3}	19.17	18.71	0.64	0.021	0.008	0.013
					C_{4}	22.98	22.77	0.82	0.009	0.004	0.005
					C_{5}	24.69	24.71	0.91	0.001	0.004	-0.005
		40	2.0	0.02	C_{1}	21.08	20.31	0.36	0.017	0.007	0.010
					C_{2}	26.74	25.77	0.50	0.022	0.007	0.015
					C_{3}	29.33	28.49	0.55	0.019	0.006	0.013
					C_{4}	36.91	36.15	0.73	0.017	0.003	0.014
					C_{5}	40.71	40.27	0.83	0.010	0.002	0.008
$15-\mathrm{nm}$ pore,	35	5	2.0	0.20	C_{1}	6.66	6.65	0.47	0.002	0.021	-0.019
25 cm					C_{2}	7.42	7.34	0.60	0.014	0.014	0.00
					C_{3}	7.72	7.67	0.67	0.009	0.009	0.00
					C_{4}	8.71	8.56	0.83	0.027	0.014	0.013
					C_{5}	9.27	9.02	0.91	0.045	0.031	-0.014
		10	2.0	0.10	C_{1}	8.35	8.23	0.38	0.011	0.014	-0.003
					C_{2}	9.79	9.59	0.51	0.018	0.014	0.004
					C_{3}	10.42	10.23	0.58	0.017	0.011	0.006
					C_{4}	12.24	12.08	0.74	0.014	0.004	0.010
					C_{5}	13.13	13.02	0.83	0.010	0.004	0.006
		20	2.0	0.05	C_{1}	10.88	10.68	0.31	0.009	0.008	0.001
					C_{2}	13.65	13.32	0.44	0.002	0.008	0.006
					C_{3}	14.98	14.64	0.50	0.015	0.007	0.008
					C_{4}	18.50	18.20	0.66	0.014	0.004	0.010
					C_{5}	20.40	20.15	0.75	0.011	0.003	0.008
		80	2.0	0.01	C_{1}	19.46	19.44	0.20	0.000	0.001	-0.001
					C_{2}	29.58	29.10	0.32	0.005	0.002	0.003
					C_{3}	35.17	34.35	0.38	0.009	0.002	0.007
					C_{4}	48.35	47.12	0.52	0.014	0.002	0.012
					C_{5}	55.91	55.06	0.61	0.010	0.001	0.009

びびびびびびずびびびびびびびずひ

$\stackrel{\underset{\sim}{8}}{\stackrel{y}{8}}$	$\frac{9}{0}$	$\stackrel{\because}{\circ}$	S
$\stackrel{0}{\mathrm{~N}}$	\bigcirc	$\stackrel{O}{\mathrm{i}}$	\bigcirc
n	\bigcirc	8	\bigcirc

[^3]\star Temperature (${ }^{\circ} \mathrm{C}$).
** Gradient time (min).
${ }^{\S} V_{\mathrm{M}}=2.0 ; V_{\mathrm{G}}$ in ml .

$\begin{aligned} & \$ 8 \mathrm{M}=\mathrm{M}^{8}= \\ & \text { Refers to carbon number of each alkyl chain in dialkyl phthalate solute (} \mathrm{C}_{1} \text {, dimethyl phthalate). } \\ & \text { Calculated value. }\end{aligned}$
${ }^{\text {tt }}$ Sum of corrections for gradient dispersion and solvent demixing. Note that factor of 1.1 in eqn. 34 is cancelled exactly by $\Delta \varphi$ factor $=0.9$.
a $\bar{\varphi}>1$ (elution outside of gradient).
calculated values of t_{g} (eqn. 4) in terms of values of $\delta \varphi$ equal to $\left[\left(t_{\mathrm{g}}\right)_{\text {expt }}\right.$ $\left.\left(t_{\mathrm{g}}\right)_{\text {calc }}\right] \Delta \varphi / t_{\mathrm{G}}$. It is further assumed that $\delta \varphi$ is the sum of specific error contributions, $\delta \varphi_{i}$, from each error source i (e.g., $\delta \varphi_{\mathrm{m}}$ and $\delta \varphi_{s}$, which have already been discussed). We shall define several such error sources as we proceed, based on the discussion in the Theory section.

Reproducibility of retention

A total of 30 isocratic and 30 gradient runs were made over a 2 -month period in order to assess the reproducibility of retention (300 data points). The results are summarized in Table V. It can be seen that that the overall variation in isocratic values of k^{\prime} was $\pm 1.2 \%$ (1 standard deviation, S.D.). According to eqn. 7 , this should result in a variation in t_{g} values of $\delta \varphi=0.012 / 2.3 \times 3=0.0017$ (assuming an average value of $S=3$ for the present system and solutes). The corresponding value of the standard deviation in t_{g} values is then $0.0017\left(t_{\mathrm{G}} / \Delta \varphi\right)=0.02 \mathrm{~min}$. The cycle time of the solenoid valves that service the gradient mixer contributes an additional 1.7 sec to uncertainty in t_{g} (or $0.03 \mathrm{~min}, 1 \mathrm{~S} . \mathrm{D}$.), so that the predicted variation in t_{g} values is then $\left(0.02^{2}+0.03^{2}\right)^{\frac{1}{2}}=0.04 \mathrm{~min}(1 \mathrm{~S} . \mathrm{D}$.). This is in rough agreement with the observed variation of t_{g} values in Table $\mathrm{V}(-0.02 \mathrm{~min})$.

More limited data were obtained for the reproducibility of t_{g} values for other values of $t_{\mathrm{G}}: t_{\mathrm{G}}=5 \mathrm{~min}(\pm 0.01 \mathrm{~min}), t_{\mathrm{G}}=20(\pm 0.04 \mathrm{~min})$ and $t_{\mathrm{G}}=40(\pm 0.16$ min). Eqn. 7 predicts that $\delta \varphi$ should be independent of t_{G}, or that variation in t_{g} should be proportional to t_{G}. This is approximately the case, as shown in Table VI.

Gradient "non-ideality"

The preceding paper ${ }^{1}$ provides guidelines for predicting errors in experimental t_{g} values due to distortion of the gradient via dispersion in the gradient system. Values of $\delta \varphi_{\mathrm{m}}$ (gradient error due to the system) could be obtained for each t_{g} value in Table

TABLE V

REPRODUCIBILITY OF ISOCRATIC AND GRADIENT RETENTION DATA

Thirty replicates each procedure over a 2-month period; isocratic conditions, $2.0 \mathrm{ml} / \mathrm{min}$, one $6-\mathrm{nm} \mathrm{C}_{18}$ column, $35^{\circ} \mathrm{C}, \varphi=0.75$; gradient conditions, same except gradient from $\varphi=0.10$ to $\varphi 1.00, t_{\mathrm{G}}=10$ min.

Solute *	$t_{R}(\mathrm{~min})^{\star \star}$	$k^{\prime \star \star}$	$C V(\%)^{\star \star \star}$	$t_{\theta}(\mathrm{min})^{8}$
C_{1}	1.74 ± 0.01	0.58	1.8	8.84 ± 0.03
C_{2}	2.26 ± 0.01	1.05	1.0	10.32 ± 0.02
C_{3}	2.53 ± 0.015	1.30	1.1	10.92 ± 0.02
C_{4}	5.56 ± 0.045	4.05	1.0	12.84 ± 0.02
C_{5}	9.90 ± 0.11	8.00	1.2	13.75 ± 0.02
			$\pm 1.2^{\$}$	$\pm 0.02 \mathrm{~min}$

[^4]TABLE VI
REPRODUCIBILITY OF t_{s} or $\bar{\varphi}$ VALUES

$t_{\boldsymbol{G}}(\min)$	$\delta \varphi$	$t_{g}(\min)$
5	± 0.002	± 0.01
10	± 0.002	± 0.02
20	± 0.002	± 0.04
40	± 0.004	± 0.16

IV from Table I in ref. 1 . The contribution of these gradient errors to t_{g} was then given as $\delta \varphi=-1.1 \delta \varphi_{\mathrm{m}}$, as in ref. 1 .

Flow-rate errors due to compressibility effects were analyzed in the preceding paper ${ }^{1}$. For the present acetonitrile-water systems, with their lower column pressures, errors from this source $\left(\delta \varphi_{\mathrm{f}}\right)$ were insignificant. The delay time, t_{D} (equal to $\left.V_{\mathrm{D}} / F\right)$, was determined directly as described in the preceding paper ${ }^{1}: V_{\mathrm{D}}$ was equal to 5.5 $\pm 0.1 \mathrm{ml}$. Solute pre-elution, as discussed previously ${ }^{1}$, was also insignificant, except for the case of dimethyl phthalate as the solute with the $15-\mathrm{nm}$ - pore C_{18} column. Data for this case were ignored.

Values of t_{0} and $t_{\text {sec }}$

Values of t_{0} were measured for each system and used to calculate values of $t_{\text {sec }}$ as described in the Theory section and summarized in Table I. For the present system and solutes, errors in the calculation of $t_{\mathrm{sec}} F=V_{\mathrm{sec}}$ are believed to be no larger than $\pm 0.02 \mathrm{ml}$, suggesting a maximum error $(\delta \varphi)$ of $0.02 / V_{\mathrm{G}}$. For $V_{\mathrm{G}} \geqslant 5 \mathrm{ml}$, as in the present study, the contribution to values of $\delta \varphi$ from errors in t_{sec} is then less than 0.004 and usually much smaller.

Non-linear plots of $\log k^{\prime}$ vs. φ
Fig. 1 shows plots of $\log k^{\prime}$ vs. φ for a particular system ($6-\mathrm{nm}$ pore column, $35^{\circ} \mathrm{C}$) and three of the five solutes ($\left.\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{5}\right)$. These plots are linear in the region $0.65 \leqslant \varphi \leqslant 1.00$, but become significantly curved at lower values of φ. In initial work we measured k^{\prime} values only over the range $0.7 \leqslant \varphi \leqslant 0.9$ and concluded (incorrectly) that linear plots of $\log k^{\prime} v s . \varphi$ persisted at lower values of $\varphi(\varphi<0.6)$.

TABLE VII

ERROR IN CALCULATED t_{g} VALUES DUE TO ASSUMPTION OF LINEAR LOG $k^{\prime} V S . \varphi$ PLOTS IN FIG. 4 (DASHED CURVES)
Column, $25 \times 0.46 \mathrm{~cm}$ I.D., 6 -nm pores; temperature, $35^{\circ} \mathrm{C}$; flow-rate, $2 \mathrm{ml} / \mathrm{min}$.

Solute	$t_{G}=5 \mathrm{~min}$			$t_{G}=40 \mathrm{~min}$			$t_{G}=80 \mathrm{~min}$			$t_{G}=160 \mathrm{~min}$		
	Exptl.	Calc.	$\bar{\varphi}$									
C_{1}	4.4	3.9	0.43	11.5	5.9	0.23	16.0	6.3	0.20	22.0	6.5	0.15
C_{3}	5.5	5.3	0.64	19.5	14.5	0.39	31.5	19.2	0.31	57.4	23.8	0.24
C_{3}	6.9	6.8	0.91	30.5	30.2	0.67	52.8	51.3	0.59	92.8	86.8	0.50

This in turn resulted in major errors in calculated values of t_{g} (eqn. 4), as illustrated in Table VII. Thus, calculated values of t_{g} for the C_{1} and C_{3} solutes are grossly in error for t_{G} values of 40 min or greater, corresponding to $\bar{\varphi}$ values of less than 0.4 (where the $\log k^{\prime}$ vs. φ plots are non-linear). When $\bar{\varphi} \geqslant 0.6$ (Table VII), experimental and calculated values of t_{g} are seen to be in reasonable agreement. Use of the tangent approximation in actual $\log k^{\prime} v s . \varphi$ plots (as described in the Theory section) was used in Table IV to calculate values of t_{g} from eqn. 4. We shall see that the resulting agreement between experimental and calculated t_{g} values was then satisfactory. From these results it is seen that agreement between experimental and calculated values of t_{g} in gradient elution will generally require that isocratic data overlap the mobile phase composition that corresponds to $\bar{\varphi}$ (composition at the column midpoint when the band is half eluted by the gradient).

Solvent demixing during gradient elution

The data in Table IV yield $\delta \varphi$ values as a function of the separation conditions; these deviations of experimental t_{g} values from calculated values (eqn. 4) can be compared with $\delta \varphi_{s}$ values calculated as described in the Theory section and plotted against $\bar{\varphi}$ in Fig. 4. However, it is necessary first to recognize other contributions to $\delta \varphi$, specifically the value of $\delta \varphi_{\mathrm{m}}$ due to gradient dispersion by the equipment. If $\delta \varphi_{\mathrm{s}}$ and $\delta \varphi_{\mathrm{m}}$ are the major contributions to $\delta \varphi$, then we can write (see eqn. 34 in ref. 1 and eqn. 13 in this paper)

$$
\begin{equation*}
\delta \varphi \approx-1.1\left(\delta \varphi_{\mathrm{m}}+\delta \varphi_{\mathrm{s}}\right) \tag{14}
\end{equation*}
$$

Experimental values of $\delta \varphi_{\mathrm{s}}$ can then be obtained from eqn. 14, given experimental values of $\delta \varphi$ and calculated values of $\delta \varphi_{\mathrm{m}}$ from Table I in ref. 1 . The quantity $\delta \varphi_{\mathrm{s}} V_{\mathrm{G}} / s$ can in turn be calculated for the data in Table IV, permitting a comparison with values predicted by the plot of this quantity against $\bar{\varphi}$ in Fig. 4. This is shown in Fig. 5. The data points shown in Fig. 5 represent data for which $\delta \varphi_{\mathrm{s}}$ values are most reliable. This involved excluding data for which $V_{G} / s>48$, since then values of $\delta \varphi_{\mathrm{s}}$ are small, and uncorrected contributions to $\delta \varphi$ from other sources lead to greater relative errors in $\delta \varphi_{\mathrm{s}}$. Data for $\bar{\varphi}>0.9$ were also excluded, as for this case values of $\delta \varphi_{m}$ are larger and values of $\delta \varphi_{s}$ smaller, again leading to less reliable values of $\delta \varphi_{\mathrm{s}}$ (see eqn. 14).

Before examining the correlation of experimental and calculated values of $\delta \varphi_{\mathrm{s}} V_{\mathrm{G}} / s$ in Fig. 5, it is necessary to discuss values of s for the columns of $6-\mathrm{nm}$ pore packing. The nominal value of s from the surface area of the unbonded silica is 1000 m^{2} /column. From Table III, the maximum uptake of acetonitrile by the column would be predicted to be 1.30 ml , but the total pore volume of the column is only 0.82 ml . In this instance, it appears that the small diameter of the pores (6 nm) leads either to a reduced surface after bonding with C_{18} groups, or a maximum surface loading by acetonitrile of less than $1.3 \mu 1 / \mathrm{m}^{2}$. It is mathematically convenient to assume that the surface loading remains constant at $1.3 \mu 1 / \mathrm{m}^{2}$, and that the surface area for this column is reduced (i.e., $s<1000 \mathrm{~m}^{2}$). The uptake of acetonitrile by the column is related to the value of t_{0} using $\mathrm{D}_{2} \mathrm{O}$ as solute, and values of ($t_{0 \mathrm{w}}-t_{0}$) per m^{2} of surface are given in ref. 11 ; here, t_{Ow} is the value of t_{0} for water as mobile phase $(\varphi=0.00)$. Therefore, division of experimental values of $t_{0 w}-t_{0}$ for the

Fig. 5. Comparison of experimental (O) and calculated (-) values of $\delta \varphi_{\mathrm{s}}$ as in Fig. 4. See text. Experimental data are averages over increments of 0.05 in $\bar{\varphi}$.
present columns by the latter values from ref. 11 yields an effective value of s for the column. The data in Table I were utilized in this fashion for values of φ of $0.2,0.4$, 0.6 and 0.8 , for both the 6 - and $15-\mathrm{nm}$ pore columns. The resulting values of s are given in Table VIII.

For the 6 -nm pore silica the resulting value of $s\left(321 \mathrm{~m}^{2}\right)$ suggests both a lower surface area for this C_{18}-silica and less than $1.3 \mu \mathrm{l} / \mathrm{m}^{2}$ of acetonitrile uptake at saturation. For the $15-\mathrm{nm}$ pore silica, the value of s is within experimental error of the previous value for the bonded silica. We assume $s=320$ and 350 (Fig. 5), respectively, for $6-$ and $15-\mathrm{nm}$ pore packings.

Returning to the correlation in Fig. 5, it is assumed here that the contribution of other (uncorrected) effects to $\delta \varphi$ values is about ± 0.005 unit, including the imprecision in $\delta \varphi$ of ± 0.002 unit referred to earlier. The vertical lines through each

TABLE VIII
CALCULATED VALUES OF SURFACE AREA
$\begin{array}{lccl}\hline \text { Column } & \begin{array}{l}\text { sfrom value } \\ \text { of } t_{0 w}-t_{0}\left(m^{2}\right)\end{array} & \begin{array}{l}\text { Surface area of column }\left(m^{2}\right) \\$\cline { 4 - 4 }\end{array} \& $\left.\begin{array}{l}\text { Unbonded } \\ \text { silica }\end{array}\end{array} \begin{array}{l}\text { Bonded } \\ \text { silica }\end{array}\right]$

[^5]TABLE IX
VARIATION OF SOLVENT-DEMIXING FUNCTION ($\left.\delta \varphi_{\mathrm{s}} V_{\mathrm{G}} / s\right)$ WITH SOLUTE RETENTION, $\bar{\phi}$
Gradients from φ_{0} to $\varphi=1.0$.

$\bar{\varphi}$			
	$\varphi_{0}=0.1$	$\varphi_{0}=0.3$	$\varphi_{0}=0.5$
0.10	0.00		
0.15	0.26		
0.20	0.49		
0.25	0.66		
0.30	0.77	0.00	
0.40	0.86	0.37	
0.50	0.75	0.41	0.00
0.60	0.50	0.28	0.16
0.70	0.26	0.18	0.12
0.80	0.22	0.18	0.13
0.90	0.26	0.20	0.15
1.00	0.19	0.12	0.05

Fig. 6. Variation of column dead-volume ($V_{m}=F t_{0}$) with flow-rate and effect on retention volume, V_{R}, and capacity factor, k^{\prime}. C_{2} solute, $35^{\circ} \mathrm{C}, \varphi=0.75$.
data point in Fig. 5 correspond to an uncertainty of ± 0.005 unit in $\delta \varphi$ and $\delta \varphi_{\mathrm{s}}$. The resulting correlation in Fig. 5 is reasonable and confirms the importance of solvent demixing that was predicted by the model in the Theory section (Fig. 4). The data in Fig. 4 are further tabulated in Table IX. Note that the value of $\delta \varphi_{s} V_{G} / s$ does not depend on the final value of φ in the gradient $\left(\varphi_{f}\right)$.

Stationary phase non-equilibrium

This effect, if it significantly alters t_{g} values in gradient elution, should be a function of mobile phase flow-rate and/or temperature (see discussion in Theory section). No such effects were observed in this study, as can be seen from the data in Table IV.

Pressure dependence of k^{\prime}

Previous workers ${ }^{10}$ have noted that V_{m} increases with increasing column pressure (or flow-rate) in reversed-phase systems. We have observed this effect in the present system, as summarized in Fig. 6a. It can be seen that V_{m} increases by about 10% as the flow-rate is increased from 0 to $7.5 \mathrm{ml} / \mathrm{min}$, corresponding to a range of column inlet pressures of $0-325 \mathrm{~atm}$. This increases retention volumes, V_{R}, by the same absolute amount, as shown in Fig. 6 b (C_{2} as solute); the dashed curve in Fig. 6 b has the same slope as the solid curve in Fig. 6a. The apparent k^{\prime} values from Fig. 6 a and b are plotted in Fig. 7c.

According to eqn. 10, the effect of variation in V_{m} and k^{\prime} (as in Fig. 6) on calculated t_{g} values (eqn. 4) is simply to add the corresponding variation in $t_{\text {sec }}$ (or t_{0}) to calculated value of t_{g}. Values of $t_{\text {sec }}$ are equal to about $0.93 t_{0}$ (Table I), so from Fig. 6 we have

$$
\begin{equation*}
V_{\mathrm{sec}}=2.07+0.026 F \tag{15}
\end{equation*}
$$

for $\varphi=0.75$. The corresponding error $\delta \varphi_{t_{0}}$ introduced by variation in t_{0} with F is then $0.026 \Delta F / V_{\mathrm{G}}$, where δF refers to the difference in F values for corresponding gradient and isocratic runs used for comparing experimental νs. calculated t_{g} values. For most of the data collected here, $\Delta F<2 \mathrm{ml} / \mathrm{min}$ and $V_{\mathrm{G}}>10 \mathrm{ml}$, so $\delta \varphi_{\mathrm{pk}}<$ 0.005 . Errors in the calculated values of t_{g} due to the effect of Fig. 6 (variation of V_{m} with F) can be minimized by collecting isocratic data at the same flow-rate as used for the gradient run (or by running at lower flow-rates).

Summary and evaluation of errors in calculated t_{g} values (eqn. 4)
Table X summarizes the error contributions to eqn. 4 for the calculation of t_{g}. The major errors encountered were (a) gradient delay (value of t_{D}), (b) gradient dispersion (value of $\delta \varphi_{\mathrm{m}}$), (c) variation of t_{sec} with change in φ, (d) solvent demixing (value of $\delta \varphi_{s}$) and (e) the pressure dependence of k^{\prime}. In each instance these contributions to t_{g} can be calculated from the experimental conditions. The residual $\delta \varphi$ values in Table IV represent the errors in calculated t_{g} values after correction for effects (a)-(d) above. Appendix I presents a model calculation to show how these corrections are applied, based on the present analysis.

Random errors in t_{g} or t_{R} cannot be corrected for. Two such contributions to errors were identified in this study: (a) variable gradient initiation and (b) variable

TABLE X
SUMMARY OF ERRORS CONTRIBUTING TO CALCULATED VALUES OF t_{s} AS DETERMINED FROM EQN. 4

Effect	Error ($\delta \varphi_{i} / \Delta \varphi$)		Maximum error in this study*	
	Correctable	Random	$t_{G}=5$	$t_{G}=100$
Pumping error (flow-rate $\delta \varphi_{f}$) (eqn. 30 in ref. 1)	$-(\delta F / F) t_{0} / t_{\mathbf{G}}$	$0^{\star \star}$	0.004	0.000
Gradient delay, $V_{\mathrm{D}}=F t_{\mathrm{D}}$:				
Value of t_{D} (eqn. 10 of in ref. 1)	$t_{\mathrm{D}} / t_{\mathrm{G}}$		0.55	0.027
Variable gradient initiation		$t_{\mathrm{d}} / \sqrt{12} t_{\mathrm{G}}$	± 0.006	0.000
$t_{\mathrm{d}}\left(\delta \varphi_{\mathrm{d}}\right)^{14}$ Solute pre-elution ($\delta \varphi_{\mathrm{p}}$) (eqn. 20 in ref. 1)	$-V_{\mathrm{D}} / 2.3 S k_{0} V_{\mathrm{m}}$		$0.003^{* *}$	$0.003^{* * *}$
Gradient dispersion ($\delta \varphi_{\mathrm{m}}$) (Table I in ref. 1)	$-1.18 \varphi_{\mathrm{m}}$		$0.07{ }^{\text {§ }}$	$0.004^{\text {¢ }}$
Variability of isocratic k^{\prime} values ($\delta \varphi_{\mathrm{k}}$) (eqn. 7)		$\left(\delta k_{0} / k_{0}\right) / 2.3 S$	$\begin{aligned} & \pm 0.002 \\ & (\pm 0.003)^{8} \end{aligned}$	$\begin{aligned} & \pm 0.002 \\ & (\pm 0.003)^{88} \end{aligned}$
Variation of $t_{\text {see }}$ with $\varphi\left(\delta \varphi_{\text {sec }}\right)$ (eqn. 10, Table I)	$\delta t_{\text {sec }} / t_{\text {G }} \varphi$		0.056	0.003
Non-linear plots of $\log k^{\prime}$ vs. φ	See discussion of Table VII and Fig. 1			
Solvent demixing ($\delta \varphi_{s}$) (Fig. 4, Table IX)	$-1.1 \delta \varphi_{\mathrm{s}}$		0.05	0.002
Stationary phase non-equilibrium	Unimportant			
Pressure dependence of $k^{\prime}\left(\delta \varphi_{\mathrm{pk}}\right)$ (eqn. 15)	$-0.026 \Delta F / t_{\text {G }}{ }^{\text {s }}$		0.05	0.00

[^6]k_{0} values due to changes in the separation conditions that are common to both gradient and isocratic elution. The data in Table X suggest that random errors contribute a $\delta \varphi$ value of $\pm 0.003-0.007$ unit, depending on the value of V_{G}. For most of the data in Table IV, the value of $\delta \varphi$ due to random errors should be about ± 0.003 unit. The actual error (± 0.010) for the data in Table IV suggests that we have not accounted for all sources of error in these gradient-isocratic comparisons of retention data, but the following discussion suggests that these remaining errors are not of practical significance.

We did observe that residual errors in experimental t_{g} values (after correction for various effects) correlate with $\bar{\varphi}$, as shown in Table XI. Use of these empirical $\delta \varphi$ values (Table XI) reduced the imprecision of calculated t_{g} values to ± 0.004 (1 S.D.) in φ, which is close to the expected value from random error (± 0.003). Errors in the gradient provided by the HPLC system could account for such an effect, but in fact the system was exhaustively tested and found to be free from such errors. No other physical effect of which we are aware can explain the above correlation of errors in t_{g} with $\bar{\varphi}$.

There are two approaches to minimizing errors in calculated values of t_{g} (or

TABLE XI
CORRELATION OF AVERAGE (UNACCOUNTED FOR) ERRORS WITH $\bar{\varphi}$

$\bar{\varphi}$	Average error $(\delta \varphi)$	$\bar{\varphi}$	Average error $(\delta \varphi)$
0.1	-0.001	0.7	+0.010
0.3	+0.006	0.9	0.000
0.5	+0.010	1.0	-0.010

errors in isocratic parameters derived from gradient data): (a) use of conditions (large values of V_{G}) that minimize gradient dispersion and solvent demixing errors, and (b) correction of measured t_{g} values for these effects. The data in Table IV can be summarized as in Table XII. The use of larger V_{G} values restricts the choice of k^{\prime} values for corresponding isocratic conditions, which may be undesirable in some instances. Correction of t_{g} values is seen to be quite effective, decreasing the variance in t_{g} by about $86 \%\left(0.027^{2}-0.010^{2} \mathrm{vs} .0 .027^{2}\right)$. The significance of these errors in calculated t_{g} values will be explored further in the next paper of this series ${ }^{25}$.

TABLE XII
ERRORS IN t_{g} AT DIFFERENT V_{G} VALUES

Value of V_{G}	Error in $t_{g}(\delta \varphi)$	
	Uncorrected	Corrected
<20	0.047	0.013
$\geqslant 20$	0.020	0.009
All	0.027	0.010

Practical significance of present findings

This study bears on several practical questions that relate to the use of gradient elution:
(1) How reproducible are gradient retention data measured at different times in the same laboratory, or among different laboratories? How does retention reproducibility vary with separation conditions and different LC equipment?
(2) How accurately can isocratic retention data be estimated, based on gradient runs for corresponding LC systems (same solutes, mobile phase, etc.)?
(3) What practical limitations exist in the use of gradient elution to carry out method development for isocratic separation?

The reproducibility of gradient retention data is generally considered to be poorer than that of isocratic data for the same LC system. This study provides theory and data to evaluate this conclusion. Eqn. 7 shows that variability in isocratic retention ($\delta k^{\prime} / k^{\prime}$) is equivalent to variability in gradient retention ($\delta \varphi$), with a proportionality factor of $(1 / 2.3 S)$. This is illustrated by the data in Table V. In terms of retention times t_{R} and t_{g}, it can be seen from Table V that isocratic retention appears
more precise when k^{\prime} is small $\left(k^{\prime}<2\right)$, whereas gradient retention is more precise when k^{\prime} is large. For larger solute molecules such as synthetic polymers or proteins, the value of S will be much greater (e.g., refs. 9 and 23), and then values of t_{g} will generally be much more precise than are values of t_{R}.

There is further opportunity for variation in gradient retention, owing to its dependence on the LC equipment. Thus, for comparisons of t_{g} values between different laboratories, the gradient equipment used must either be equivalent in terms of gradient delay $\left(V_{\mathrm{D}}\right)$ and gradient dispersion $\left(V_{\mathrm{M}}\right)$, or experimental conditions must be chosen to minimize differences in V_{D} and V_{M}, e.g., by choosing larger values of V_{G}. Alternatively, differences in V_{D} and V_{M} can be determined for different LC systems, and reported values of t_{g} can be corrected for these differences as described here. It can then be expected that experimental t_{g} values will show no more interlaboratory variation than do values of t_{R}.

The precise calculation of isocratic retention data from gradient runs (in the absence of assumptions such as those in ref. 24) requires two such runs, as described in ref. 9 and further elaborated in ref. 25 . The precision of isocratic data obtained in this fashion is directly related to the question examined here: how precisely can gradient retention data be calculated (eqn. 4) from isocratic data? For the present system, an uncertainty in calculated t_{g} values (eqn. 4) was observed, equal to ± 0.010 unit in $\delta \varphi$. For calculation of isocratic retention from gradient runs, an equivalent error can be assumed. This means for the small solute molecules studied here ($S \approx 3$) an error in $\log k^{\prime}$ of 3×0.010, or about a 7% error in isocratic k^{\prime} values. Errors in the separation factor α are much smaller, because of the general correlation of $\delta \varphi$ with $\bar{\varphi}$ (adjacent bands will have similar $\bar{\varphi}$ values) and resulting cancellation of errors in α.

Consider finally the practical limitations on the use of gradient elution for carrying out method development for isocratic separations. Here we have shown that is is possible to calculate gradient retention data from measured isocratic t_{R} values (and vice versa) for small molecules. The optimization of isocratic retention during method development is not very sensitive to absolute values of k^{\prime} (adjustment of α values is of major concern), and the present analysis suggests that gradient nonideality will not normally be a problem in this respect. A later paper ${ }^{25}$ will examine this question in greater detail and provide practical examples of the use of gradient elution in isocratic method development. The similar adaptation of the present approach for large-molecule separations requires further study ${ }^{25}$, as earlier it was observed ${ }^{9}$ that incorrect S values can be derived from gradient runs for the case of molecules of 17,000 daltons and larger.

Although this study is reasonably general, additional data are required for some of the corrections for gradient nonideality. Thus, values of V_{D} and V_{M} must be determined (or estimated - see Table II in ref. 1) for a given gradient system. Values of $t_{0}, t_{\mathrm{see}}, k_{0}$, etc., must be known as a function of φ for the solutes in question. The effective surface area, s, of the column must be known. Data as in Fig. 4 and Table IX for other organic solvents are not required, as to a good approximation it appears ${ }^{16,11}$ that resulting values of $\delta \varphi_{\mathrm{s}} V_{\mathrm{G}} / s$ are identical for acetonitrile and tetrahydrofuran as organic solvents, and for different column temperatures. Values of $\delta \varphi_{s} V_{G} / s$ for methanol as the solvent are about half the values in Table IX. Finally, either the pressure dependence of k^{\prime} must be known, or gradient and isocratic runs must be carried out at low or similar flow-rates.

CONCLUSIONS

This study has provided a theoretical analysis with experimental verification of gradient retention times, t_{g}, in "non-ideal" systems, i.e., those exhibiting effects not recognized by simple models of gradient elution (as in ref. 2). On the basis of this treatment it is possible to calculate corrections for non-ideal effects, and to calculate values of t_{g} from retention data for isocratic systems. Calculated and experimental t_{g} values are in close agreement: $\pm 1.0 \%$ of the total gradient time, t_{G}. This agreement is close to that expected from the random variation of experimental retention data in isocratic and gradient systems as studied by us.

The major non-ideal contributions to gradient retention are as follows: (a) gradient delay or the time required by the mobile phase to pass from the gradient mixer to the column inlet; (b) gradient dispersion or the distortion of gradient shape by the LC equipment; (c) variation of the column dead-time with mobile phase composition and column pressure; and (d) demixing of the mobile phase as a result of uptake by the column packing of strongly sorbed solvent components (organic solvent in the case of reversed-phase systems). Each of these effects was modeled and studied experimentally. A basis now exists for estimating their importance for any gradient elution system.

The practical conclusions of this study include the following:
(1) with proper attention to gradient equipment, retention times in gradient elution should be as reproducible as in isocratic separation;
(2) gradient retention times can be accurately predicted from isocratic data for the same system; isocratic data should similarly be calculatable from corresponding gradient data;
(3) these highly precise relationships between gradient and isocratic retention open the way to a number of more efficient schemes for retention optimization and method development for both gradient and isocratic separations; some of these are discussed elsewhere ${ }^{25}$;
(4) a better understanding now exists for gradient separation per se, and this paves the way for a new look at the gradient separation of macromolecular species such as proteins.

APPENDIX I

Illustrative calculation of corrected t_{g} values, starting with isocratic data
The t_{g} value for diamyl phthalate will be calculated for the following conditions: $25 \times 0.46 \mathrm{~cm}$ I.D. Zorbax ODS column, $15-\mathrm{nm}$ pore size, $t_{\mathrm{G}}=5 \mathrm{~min}, F=$ $2 \mathrm{ml} / \mathrm{min}\left(V_{\mathrm{G}}=10 \mathrm{ml}\right), V_{\mathrm{M}}=2 \mathrm{ml}, \Delta \varphi=0.9(10-100 \% \mathrm{~B}), V_{\mathrm{D}}=5.5 \mathrm{ml}\left(V_{\mathrm{M}} / V_{\mathrm{G}}\right.$ $=0.2$).

The isocratic data for diamyl phthalate yield (Table II)

$$
\begin{equation*}
\log k^{\prime}=4.445-6.556 \varphi+1.943 \varphi^{2} \tag{A1}
\end{equation*}
$$

Based on the slope-tangent approach described in this paper, estimate an initial value for $\bar{\varphi}$, equal to 0.7 . The corresponding values of t_{0} and $t_{\text {sec }}$ are 1.27 min and 1.20 \min, respectively (Table I). The value of $\log k$ from eqn. A1 is then 0.808 . The slope
of the tangent to the $\log k^{\prime}$ vs. φ curve at $\bar{\varphi}=0.7$ is obtained by differentiating eqn. A1:

$$
\begin{aligned}
S & =-6.556+3.886 \varphi \\
& =3.836
\end{aligned}
$$

The value of b for the separation can now be obtained from eqn. 3:

$$
b=3.836 \cdot 0.9 \cdot 1.27 / 5=0.877
$$

The value of k_{0} is given by

$$
\begin{aligned}
\log k_{0} & =\left(\bar{\varphi}-\varphi_{0}\right) S+\log \bar{k} \\
& =3.11
\end{aligned}
$$

Given values of k_{0}, b, t_{0} and $t_{\text {sec }}$, a value of t_{g} can be calculated from eqn. 4 (equal to 6.11 min). This value is based on the initial assumption of $\bar{\varphi}=0.7$, which must be checked. Calculate a value of \bar{k} from the provisional value of b (see pp. 292-293 in ref. 2):

$$
\begin{align*}
k & =1 / 1.15 b \tag{A2}\\
& =0.99
\end{align*}
$$

The value of k corresponding to our initial estimate of $\bar{\varphi}$ was $6.4(\log \bar{k}=0.808)$, so a new value of $\bar{\varphi}$ is estimated based on $\bar{k}=0.99$ and the whole process repeated. Continuation of this iterative approach eventually yields a final value of $\bar{\varphi}=0.91$, with the corresponding value of $t_{\mathrm{g}}=9.02 \mathrm{~min}$.

Now the latter values of $\bar{\varphi}$ and t_{g} must be corrected for non-ideal gradient effects, as discussed in this and the preceding paper. The major error contributions are due to gradient dispersion and solvent demixing. To correct for gradient dispersion (see preceding paper) use either eqn. 24, Table I or Fig. 2. In the present example, $V_{\mathbf{M}} / V_{\mathbf{G}}=0.2$ and $\bar{\varphi}=0.91$. The value of $V / V_{\mathbf{G}}$ required in Table I in the preceding paper ${ }^{1}$ is given by

$$
\begin{aligned}
V / V_{\mathrm{G}} & =\left(\bar{\varphi}-\varphi_{0}\right) / \Delta \varphi \\
& =0.9
\end{aligned}
$$

from which $\delta \varphi_{\mathrm{m}} / \Delta \varphi=-0.021$. The change in $\bar{\varphi}$ as a result of gradient dispersion is then (eqn. 34 in the preceeding paper) ${ }^{1}$

$$
\delta \varphi=-1.1\left(\delta \varphi_{\mathrm{m}} / \Delta \varphi\right) \cdot 0.9=0.021
$$

This is equivalent to an increase in t_{g} of $\delta \varphi_{\mathrm{G}} / \Delta \varphi=0.021 \cdot 5 / 0.9$ or 0.12 min .
The corresponding change in t_{k} as a result of solvent demixing is calculated as follows. From Fig. 4 (or Table IX) a value of $\delta \varphi_{\mathrm{s}} V_{\mathrm{G}} / s$ can be obtained for $\varphi_{0}=0.1$ and $\bar{\varphi}=0.91: 0.26 \cdot 10^{-3} \mathrm{ml} / \mathrm{m}^{2}$. For the present system, $s=350 \mathrm{~m}^{2}$ and $V_{\mathrm{G}}=10$ ml . Therefore, $\delta \varphi_{\mathrm{s}}=-0.010$. The corresponding value of $\delta \varphi$ (eqn. 14) is then
$-1.1(-0.010)=0.011$ or 0.06 min . The sum of contributions to t_{g} from gradient dispersion and solvent demixing is $0.06+0.12=0.18 \mathrm{~min}$. The calculated value of t_{g} is then 9.02 min plus this correction, or 9.20 min . The experimental value from Table IV is 9.27 min .

SYMBOLS
(I refers to the preceding paper ${ }^{1}$, II to this paper)
 composition φ_{0};
$k_{\mathrm{w}} \quad$ value of k^{\prime} for water as mobile phase;
$K_{\mathrm{s}} \quad$ equilibrium constant $\left(\mu \mathrm{l} / \mathrm{m}^{2}\right)$ for sorption of organic solvent from mobile phase on to stationary phase (equal to some function of φ);
eqn. 11 (II);
$S \quad$ slope of plot of $\log k^{\prime}$ vs. φ; eqn. 2 (I); also, for non-linear plots, the slope of the tangent to the curve at $\varphi=\bar{\varphi}$ (discussion of Fig. 1, II);
s
t
$t_{\mathrm{d}} \quad$ delay time (min) between operator initiation of gradient and response of gradient system; $0-0.1 \mathrm{~min}$ for Model 8800 system;
$t_{\mathrm{D}} \quad$ delay time (min) for gradient system; time required for mobile phase to travel through mixing chamber to column inlet; Fig. 1b (I);
$t_{\mathrm{g}} \quad$ retention time (min) of solute in gradient elution; Eqns. 5 and 6 (I);
$t_{\mathrm{g} 1}, t_{\mathrm{g} 2} \quad$ values of t_{g} for two gradient runs where only t_{G} is varied (for t_{G} $=t_{\mathrm{G} 1}$ and $t_{\mathrm{G} 2}$, respectively);
$\left(t_{\mathrm{g}}\right)_{0.5}$ time required for solute band to reach midpoint of column in gradient elution; eqn. 8 (I);

$\begin{aligned} & \left(t_{\mathrm{g}}\right)_{\text {calc }} \\ & \left(t_{\mathrm{g}}\right)_{\text {expt }} \end{aligned}$	value of t_{g} calculated from isocratic data via eqn. 4 (II); experimental value of t_{g};
t_{g}^{x}	value of $\left(t_{g}-t_{0}\right)$ for column of fractional length $1-x$; eqn. 13 (I);
$t_{\text {G }}$	gradient time (min); time from beginning ($\varphi=\varphi_{0}$) to end ($\varphi=$ φ_{f}) of gradient; eqn. 3 (I);
t_{0}	column dead-time (min); time required for a small, unretained solute molecule to pass through the column;
t_{0}^{x}	value of t_{0} for column of fractional length $1-x ;$
t_{R}	solute retention time (min) in isocratic elution;
$t_{\text {sec }}$	time (min) required for an unretained, partially excluded solute molecule to pass through column; see discussion of Table I (II);
V	volume (ml) of mobile phase eluted from column at time t;
V_{a}	instantaneous retention volume of solute band (isocratic basis) at some time during gradient elution; eqn. Al (I);
$V_{\text {c }}$	volume (ml) contained by connecting tubing between gradient mixer and column inlet;
$V_{\text {c }}$	contribution to gradient dispersion volume V_{M} from connecting tubing between mixer and column inlet; eqns. 27 and 29 (I);
$V_{\text {D }}$	delay volume, equal to total volume of system from gradient mixer to column inlet; eqn. 28 (I);
$V_{\text {D }}$	value of V_{D} corrected for gradient initiation delay; eqn. 32 (I);
V_{g}	retention volume (ml) of solute in gradient elution; equal to $t_{\mathrm{g}} F$;
V_{G}	gradient volume (ml); equal to $F t_{\mathrm{G}}$;
V_{i}	volume (ml) of a component which contributes to V_{D} or V_{M}; eqns. 27 and 28 (I) and see Table II (I);
V_{m}	volume (ml) of mobile phase within the column; equal to $t_{0} F$;
V_{M}	volume of the gradient mixer (ml); also, dispersion volume of gradient system; eqns. 25-27;
$V_{\text {sec }}$	equal to $t_{\text {sec }} F$;
x	in solute pre-elution, the fractional length of the column traversed by a solute band during elution by the volume V_{D} of initial mobile phase ($\varphi=\varphi_{0}$); eqn. 11 (I);
δ	differential (error) in some quantity; e.g., $\delta t_{\mathrm{g}}, \delta F$, etc., represent the error in t_{g}, F, etc.;
$\Delta \varphi$	change in φ during the gradient, equal to $\varphi_{\mathrm{f}}-\varphi_{0}$;
φ	volume fraction of organic solvent in mobile phase composed of organic and water;
$\varphi_{\mathrm{f}}, \varphi_{0}$	final and initial values of φ during gradient;
φ_{i}	value of φ for mobile phase entering mixer at time t;
$\bar{\varphi}$	value of φ at the column midpoint at the time the solute band is also at the midpoint;
$\delta \varphi$	difference in experimental and calculated (eqn. 4, II) t_{g} values, expressed in terms of φ; eqn. 7 (I);
$\delta \varphi_{\mathrm{f}}$	contribution to $\delta \varphi$ from flow-rate error; eqn. 30 (I);
$\delta \varphi_{i}$	contribution to $\delta \varphi$ from an error-source i; eqn. 7a (I);
$\delta \varphi_{\mathrm{k}}$	contribution to $\delta \varphi$ from variation in k^{\prime} or k_{0}; eqn. 7 (II);

$\delta \varphi_{\mathrm{m}}$	change in φ from ideal gradient as a result of gradient dispersion; Fig. 1d and eqn. 34 (I);
$\delta \varphi_{\mathbf{p}}$	contribution to $\delta \varphi$ as a result of solute pre-elution; eqns. 19 and 20 (I);
$\delta \varphi_{s}$	change in φ from ideal gradient as a result of solvent demixing; Fig. 4 (II) and eqn. 13a (II);
ψ	surface concentration $\left(\mu \mathrm{l} / \mathrm{m}^{2}\right)$ of organic solvent in stationary phase; eqns. 11 and 12 (II);
ψ_{0}	value of ψ before equilibration of mobile and stationary phases; Fig. 3 (II);
ψ_{i}	value of ψ after equilibration of mobile and stationary phases; Fig. 3 (II);
ψ^{*}	surface excess ($\mu \mathrm{l} / \mathrm{m}^{2}$) of organic solvent in stationary phase (isotherm data reported in refs. 10 and 11 of II).

REFERENCES

[^7]
[^0]: * Chemistry Department, Villanova University, Villanova, PA 19085, U.S.A.
 ** Lloyd R. Snyder, Inc., 2281 William Court, Yorktown Heights, NY 10598, U.S.A.

[^1]: * Measured with deuterium oxide as in refs. 10 and 11.
 ** Calculated from experimental t_{0} values as described in the text.
 *** Dimethyl $\left(\mathrm{C}_{1}\right)$ and dipentyl $\left(\mathrm{C}_{5}\right)$ phthalates.

[^2]: * Polynomial fitting equations for each column (temperature) solute combination are as follows:
 $\log k^{\prime}=A+B \varphi+C \varphi^{2}+D \varphi^{3}+E \varphi^{4}$.

[^3]: 8

 6－nm pore，
 25 cm

[^4]: * Di-n-alkyl phthalates (methyl to pentyl).
 ** Isocratic separation.
 *** Coefficient of variation in k^{\prime}.
 § Gradient elution ($t_{0}=1.0 \mathrm{~min}, b=0.3$).
 The within-day precision was much better ($\pm 0.2 \%$).

[^5]: * Surface accessible to retained solutes ${ }^{9}$ ($v s$. wide-pore bonded silica).

[^6]: * Flow-rate $2 \mathrm{ml} / \mathrm{min}, 25 \times 0.46 \mathrm{~cm}$ I.D. column (6- or $15-\mathrm{nm}$ pores).
 ** Pumping reproducibility is usually better than $\pm 0.1 \%$ for modern LC systems, leading to negligible error in t_{8}.
 * For dimethyl phthalate as solute and $15-\mathrm{nm}$ pore packing, for which $k_{0}=49$ and $S \approx 8$.
 § Error varies with $\bar{\varphi}$ as in Table I in rcf. l ; indicated values are maximum errors for any solute (and any value of $\bar{\varphi}$).
 § Recognizes error in both isocratic and gradient measurements, for comparisons based on eqn. 4; equal to $\sqrt{2}$ times error of single isocratic value.
 $\$$ Only for $6-\mathrm{nm}$ pore columns and $\varphi=0.75$; must be determined for other conditions.

[^7]: 1 M. A. Quarry, R. L. Grob and L. R. Snyder, J. Chromatogr., 285 (1984) 1.
 2 L. R. Snyder, in Cs. Horvath (Editor), High-performance Liquid Chromatography, Vol. 1, Academic Press, New York, p. 207.
 3 L. R. Snyder, Chromatogr. Rev., 7 (1965) 1.
 4 C. Liteanu and S. Gocan, Gradient Elution Chromatography, Wiley, New York, 1974, p. 198.
 5 H. Elgass, Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, 1978.
 6 P. Jandera and J. Churacek, Advan. Chromatogr., 19 (1980) 125.
 7 P. J. Schoenmakers, H. A. H. Billiet, R. Tijssen and L. de Galan, J. Chromatogr., 149 (1978) 519.
 8 R. A. Hartwick, C. M. Grill and P. R, Brown, Anal. Chem., 51 (1979) 34.
 9 J. P. Larmann, J. J. DeStefano, A. P. Goldberg, R. W. Stout, L. R. Snyder and M. A. Stadalius, J. Chromatogr., 255 (1983) 163.
 10 R. M. McCormick and B. L. Karger, Anal. Chem., 52 (1980) 2249.
 11 N. Le Ha, J. Ungváral and E. sz. Kováts, Anal. Chem., 54 (1982) 2410.
 12 A. M. Krstulovic, H. Colin and G. Guiochon, Anal. Chem., 54 (1982) 2436.
 13 L. R. Snyder and J. J. Kirkland, Introduction to Modern Liquid Chromatography, Wiley-Interscience, New York, 2nd ed., 1979.
 14 L. R. Snyder and Sj . van der Wal, Anal. Chem., 53 (1981) 877.
 15 L. R. Snyder, J. W. Dolan and J. R. Gant, J. Chromatogr., 165 (1979) 3.
 16 P. J. Schoenmakers, H. A. H. Billiet and L. De Galan, J. Chromatogr., 185 (1979) 179.
 17 R. K. Gilpin and J. A. Squires, J. Chromatogr. Sci., 19 (1981) 195.
 18 R. K. Gilpin, Amer. Lab., (1982) 104.
 19 R. K. Gilpin and M. H. Gaudet, J. Chromatogr., 248 (1982) 160.
 20 W. E. Hammers, A. G. M. Theeuwes, W. K. Brederode and C. L. de Ligny, J. Chromatogr., 234 (1982) 321.

 21 L. R. Snyder and T. C. Schunk, Anal. Chem., 54 (1982) 1764.
 22 J. R. Gant, J. W. Dolan and L. R. Snyder, J. Chromatogr., 185 (1979) 153.
 23 M. T. W. Hearne and B. Grego, J. Chromatogr., 255 (1983) 125.
 24 P. J. Schoenmakers, H. A. H. Billiet and L. de Galan, J. Chromatogr., 205 (1981) 13.
 25 M. A. Quarry, R. L. Grob and L. R. Snyder, Anal. Chem., to be submitted.

